Cortical potential imaging using L-curve and GCV method to choose the regularisation parameter
نویسندگان
چکیده
BACKGROUND The electroencephalography (EEG) is an attractive and a simple technique to measure the brain activity. It is attractive due its excellent temporal resolution and simple due to its non-invasiveness and sensor design. However, the spatial resolution of EEG is reduced due to the low conducting skull. In this paper, we compute the potential distribution over the closed surface covering the brain (cortex) from the EEG scalp potential. We compare two methods - L-curve and generalised cross validation (GCV) used to obtain the regularisation parameter and also investigate the feasibility in applying such techniques to N170 component of the visually evoked potential (VEP) data. METHODS Using the image data set of the visible human man (VHM), a finite difference method (FDM) model of the head was constructed. The EEG dataset (256-channel) used was the N170 component of the VEP. A forward transfer matrix relating the cortical potential to the scalp potential was obtained. Using Tikhonov regularisation, the potential distribution over the cortex was obtained. RESULTS The cortical potential distribution for three subjects was solved using both L-curve and GCV method. A total of 18 cortical potential distributions were obtained (3 subjects with three stimuli each - fearful face, neutral face, control objects). CONCLUSIONS The GCV method is a more robust method compared to L-curve to find the optimal regularisation parameter. Cortical potential imaging is a reliable method to obtain the potential distribution over cortex for VEP data.
منابع مشابه
The generalized cross validation method for the selection of regularization parameter in geophysical diffraction tomography
Inverse problems are usually ill-posed in such a way that it is necessary to use some method to reduce their deficiencies. The method that we choose is the regularization by derivative matrices. There is a crucial problem in regularization, which is the selection of the regularization parameter λ. In this work we use generalized cross validation (GCV) as a tool for the selection of λ. GCV was p...
متن کاملA LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography.
PURPOSE Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. METHODS The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimizati...
متن کاملA Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملData Unfolding Methods in High Energy Physics
A selection of unfolding methods commonly used in High Energy Physics is compared. The methods discussed here are: bin-by-bin correction factors, matrix inversion, template fit, Tikhonov regularisation and two examples of iterative methods. Two procedures to choose the strength of the regularisation are tested, namely the L-curve scan and a scan of global correlation coefficients. The advantage...
متن کامل